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The diffusion of smoke from a continuous elevated 
point-source into a turbulent atmosphere 

By F. B. SMITH 
Department of Mathematics, University of Manchester 

(Receiaed 16 August 1956) 

SUMMARY 
The problem is to determine the downwind concentration of 

non-buoyant smoke emitted from a continuous elevated point- 
source in a turbulent airstream. The velocity and eddy diffusivity 
coefficients are represented by related powers of the height above 
ground, and are independent of the position of the source. Exact 
solutions are obtained for the zero and second moments of the 
concentration distribution along lines lying .in the cross-wind 
direction at ground level. In special cases, these moments may 
also be determined along lines at general height. In one such 
case the concentration is determined exactly (rather than just the 
two moments) and it is found that the cross-wind distribution 
always has a Gaussian form. If it is assumed that in all cases the 
cross-wind profile is Gaussian, a formulation €or the concentration 
can be given purely in terms of the known zero and second moments. 
When the source is moving with constant velocity across the wind, 
the first moment as well as the zero and second moments is exactly 
determined, and under a similar assumption a formula for the 
concentration is found. 

1. INTRODUCTION 
A new approach is used in tackling the problem of the determination 

of the concentration of non-buoyant smoke downstream of grounded and 
elevated point-sources in a statistically-steady turbulent airstream. 

When the mean velocity is represented by a power of the height, 

u = u*(z + h)", (1.1) 
(z is the height relative to the source height h ; see figure 1) and the eddy 
diffusivity coefficient K is related to the velocity by the usual conjugate 
power relation based on Reynolds analogy, an exact solution for the 
concentration due to an elevated line-source is found for general values 
of the velocity profile parameter cc. This solution, together with a further 
exact solution for the ' spread' of the plume from a point-source, again 
for general cc, enables an expression for the ground level concentration, 
due to an elevated point-source, to be found on the basis of the single 
assumption that this concentration has a Gaussian profile in the horizontal 
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cross-wind y-direction. The restriction, that this expression is for the 
concentration at ground level only, rather than at all heights, is removed 
when the source itself is at ground level, no matter what value a may take, 
and also when the source is elevated provided that a is zero or one-half. 

The nature of these solutions and their success throws doubt on the 
theoretical basis of some previous solutions and on their range of 
applicability. 

Z 

Figure 1. The system of axes in relation to the position of the source, elevation h, 
and the unidirectional velocity field u(z). 

Before the mathematical analysis is given, it is desirable to elucidate 
and to add to the above statements. In particular, it will be necessary to 
discuss the nature of the eddy diffusivity coefficients, as some forms 
suggested fairly recently by other workers are fundamentally different in 
concept. How these other forms arose and developed is perhaps best 
seen in their historical setting. 

The equation of diffusion is 

where x is the direction of the mean stream and C stands for the concen- 
tration. The diffusion in the direction of the mean stream is neglected, 
on the usual ‘ boundary-layer ’ approximations, by comparison with the 
other terms in the equation. I t  remains to specify the form of u(x), K, 
and K,. Following Calder and others, the velocity is given by (l.l), which 
for problems of this type is a sufficiently good representation and is 
preferable on grounds of mathematical simplicity to more sophisticated 
profiles, such as the logarithmic profile based on Nikuradse’s relation, or 
Deacon’s law. The parameter tc in equation (1.1) is dependent on the 
stability of the air: in neutral stability it is normally about 5, and it 
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increases as the stability increases. As we have stated, the form of the 
dihsivity coefficients is .in dispute but it is true that there has been fairly 
general support for supposing that K,, the coefficient representing the 
vertical diffusion process, satisfies the Reynolds analogy ; that is, K, is 
proportional to the coefficient of vertical momentum transfer and thus 
(under conditions of zero horizontal pressure gradient) satisfies the 
relationship that states that the shearing stress is constant with height : 

224 
Kaz = constant. 

Thus if u satisfies (1.1) then K, also obeys a simple power law 

K, = K , ( ~ + h ) l ” .  (1.4) 
At about 100 metres, the turbulence is almost perfectly isotropic; and 

even below this level the degree of isotropy seems sufficiently high to 
warrant letting K,, as Sutton (1953) has suggested, vary in an identical 
way with K,, namely, 

K, = K , ( ~ + h ) l ” .  (1-5) 
This assumption may be tested by the validity of the solutions derived 

with it. Under certain circumstances it is conceivable that a more general 
form for K ,  would be appropriate. By taking 

the solutions may still be found for sources at ground level and also for 
elevated sources when only the ground level concentrations are required. 
Thus, although we expect p to be zero, its presence in the solutions will 
serve to indicate the influence of K,. 

The physical significance of these forms will be discussed at the end 
of the introduction in the comparison with previous work in this field. 

In  tackling the three-dimensional point-source problem it is, first of 
all, desirable to try to find any exact solutions of equations (l.l), (1.2), 
(1.p) and (1.5). Section 3 deals with the exact solution for the elevated 
point-source when a = 4. In  this particular case it is possible to separate 
(in the mathematical sense) the variables y and x in the diffusion equation 
to give two separate differential equations, one with independent variables 
x and x, the other with y and x. The  first equation is in fact the equation 
for a line source at the same x and x as the point-source, and the second 
equation gives the behaviour of the concentration profile with respect to y 
as Gaussian. It is therefore necessary to have the exact solution of the 
two-dimensional line-source problem. As will be seen below this solution 
is required not only for a = + but also for general values of a. 

In extending the work to general a, for which an exact solution could 
not be obtained, it seemed desirable to accumulate first as much exact 
knowledge about the point-source plume as possible. With this in mind, 
the approach consists in determining exact solutions for two functions of 
the point-source concentration, namely 

K, = K,(x + h)l-=+’ (1.6) 

c, = j:,cdJJ (1.7) 

D 2  
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and 

as functions of x and x. The advantages of forming the differential equations 
for these two functions are that they are now two-dimensional, the boundary 
conditions are known, and their solutions represent two of the most important 
features of the complete solution C. The first function C, gives the total 
amount of concentration on any transverse line x = constant, z = constant ; 
and, moreover, since integration of equation (1.2) with respect to y shows 
that C, is the solution of the equivalent line-source equation, it is of primary 
importance to solve the line-source problem for this reason, apart from the 
fact that it is of course an interesting problem in its own right. I t  is worth 
while noting that the term representing the lateral diffusion, and thus K,, 
does not enter into the equation for C,. The solution for the general 
elevated source is derived in $ 2  and is discussed below. 

The second function is the second moment of the transverse concen- 
tration profile and thus C,/C, is a measure of the ‘ spread ’ in the y-direction. 

Now, since we noted that in the exact solution for cc = & the concen- 
tration profiles had Gaussian transverse cross-sections, it is reasonable to 
use the exact solutions C, and C, to formulate for general GC an expression 
for C which satisfies all the boundary conditions and which is based on the 
single hypothesis of a Gaussian transverse cross-section. 

where X ( x ,  z )  andf(x, z )  can be expressed in terms of C, and C, as follows 
(using (1.7) and (1.8)) : 

The choice of the Gaussian form (1.9) is supported by the fact that, since 
the diffusion equation contains only the single derivative with respect to y, 
K, a2C/ay2, with Ky independent of y, the diffusion equation effectively 
represents a process of simple diffusion in the lateral direction, a process 
with which Gaussian profiles are usually associated. 

Since it is the spread which essentially determines the rate of decay 
of C for large x, it is to be expected that the expression (1.9) will have the 
additional property that it has the correct asymptotic behaviour. The 
general elevated line-source problem has as a particular solution the case 
of zero source-elevation h, which was historically one of the first to be 
found. This solution (5.1) which has received ample experimental verifi- 
cation is, in fact, included in the solution for general source elevation that 
is derived in $ 2  by the use of operational methods. This latter solution 
involves a Bessel function but is nevertheless readily computed (especially 
if all that is required is the concentration C, at ground level z = - h ) .  
We have 

Thus 
c = X(x,  z)e-YZlf(s, z), (1.9) 

f = 2C,/C, and X = C,~(C,/27rC,). (1.10) 

1. Q ( ~ h - t h ~ ) @  u,(z + h)1+2a + u* h1+2a 
C,(x,x) = ~ 

(2GC+1) K,x 
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which in the case of a = + has the shape shown in figure 2 for y = 0, 
x = - h. The curves for other values of c( are similar in their general 
shape although the precise details will of course vary. It is interesting to 
note that as one travels in the direction of increasing x the jump in the 
concentration from zero to an appreciable value takes place very rapidly. 

C 
- 210 h' 
Q 

+a 

Figure 2. The concentration at ground level, as a function of the distance downstream 
due to an elevated line source when 01 = 3. 

t= 0 

iximum 

Figure 3. Diagrammatic representation of the distribution of concentration idollg 
the vertical near the source. 

The solution has the same asymptotic behaviour for large x as the verified 
particular solution for h zero; for example, in conditions of neutral 
stability (E = 3) the concentration behaves like the (-i)th power of x. 
This ultimate similarity for all h is to be expected on realizing that the 
smoke distribution ' forgets ' its initial distribution as it is swept downstream. 

Near the source the concentration is asymmetrically distributed about 
the plane x = 0 (this is diagrammatically represented in figure 3). This 
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asymmetry may be accounted for by the combined effect of the variation 
of K and u with height in the following way. As the vertical diffusive 
processes increase with height, the smoke is distributed along the vertical 
more rapidly above the source than below it, so that the concentration 
profile near x = 0 becomes relatively distended above the source. Initially, 
then, the concentration is greater at, say, x = h than at x = - h (as figure 10 
shows). T h e  velocity shear also accentuates the ' asymmetry ' effect ; if, 
for a moment, one neglects diffusion and imagines that a steady source 
injects smoke at a given rate into a steady stream then it is clear that the 
density of the smoke particles in that stream would be inversely proportional 
to its speed. Thus  the effect of the velocity shear is to increase the 
concentration below the source, where the stream speed is lower, and to 
decrease it above the source, remembering however that the actual amount 
in any layer is governed largely by the diffusion process. 

T h e  differential equation for 6, is somewhat more complicated than 
that for C,,, owing to the addition of an extra term depending on the 
functional nature of Ky and on C,, itself. For zero source-elevation h, 
the method of solution is fairly straightforward and consists of expressing 
C, in the form 

By solving for c<.l) and applying the appropriate boundary conditions, C, 
is finally expressed in terms of a confluent hypergeometric function and an 
allied function V with similarly rapid convergence properties : 

2 
1+2" 

b =  - (2b+r-1)! w ; a ; 7) = zo (b  + Y) ! (b  + a + Y- 1) ! 

(1.12) 
K,' 2 (3b--4)/2 K p  ( b  - 1) ! (6 + a - 2) ! 

x0-a x 
c2 = 2!2 J( z) (0) q- (a - 1) ! (2b - 1) ! 

The behaviour of C, is chiefly governed by the term cq for small x, and 
by the term xb-" for large x. Thus  the general shape is as shown in figure 4. 
It is found that the solution of the differential equation is simplified when CI 

takes the values 0, 4, 4 and 1. 
The  problem of the elevated source does not meet with quite the same 

general success, although C, may be directly determined at all levels for 
a = 0 (as well as for a = 4, for which the exact solution has already been 
quoted) and at ground level for a = 4 and 1. (It seems reasonable to 
suppose that the solutions for these two cases could likewise be extended 
to all levels if so desired, but at present the actual method is not clear.) 
The difficulty for general a is not theoretical but rather a matter of being 
stranded with an unpleasant indefinite integral (6.6) to evaluate, and this 
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it is possible to do in terms of simple functions only in the above four cases. 
As in the case of the elevated line-source, the solutions are obtained by the 
use of operational methods. 

However, for most purposes the values of the concentration are required 
only at ground level, and this is certainly true in problems of atmospheric 
pollution. This greatly simplifies the problem since the concentration at 
ground level downwind of a point- or a line-source elevated at height h 
above ground is identical with the concentration at the same x and y, but 
at height h, due to an exactly similar source at ground level. This property 
of reciprocity has been noticed by Bosanquet & Pearson (1936) in the 
case of the line-source when tc == 0, and in the obvious case of u = constant, 

Figure 4. Diagrammatic representation of the variation of the 
‘ spread ’ C2 with distance downstream. 

I 
I 

A 
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U 

Figure 5.  The two congruent paths 9 and 9’. The coordinates of the points are : 
A = (0, 0 ,  h), B = (0, 0 ,  0), C = (x ,y ,  h), D = (x,y, 0).  

K = constant. They realized that some general theorem of the nature of 
the one given here might be true. This reciprocal theorem is rigorously 
proved in § S  and is a consequence of the fact that the solutions of the 
problem are Green’s functions. Physically the explanation of this theorem 
is not so straightforward ; if, however, one assumes that the distribution 
of perturbation velocities at any point in the field is symmetrical, then the 
probability that a particle leaving the elevated source follows a certain 
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path 9 to a point (x ,y ,O) at ground level is the same as the probability 
that a particle leaving the same source now at ground level will follow the 
congruent path 2" to the point (x, y ,  h), since both particles pass through 
corresponding points and conditions, only in opposite order. Integration 
of all such possible paths recovers the theorem. Hence the concentration 
at ground level due to the elevated source may be determined from (1.12) 
by putting z = h, that is q = u, h1+2a/( 1 + 2a),K, x. 

The results are plotted for a = 0, +, +, + and 1 in $7, and a comparison 
between them is made. From these solutions, interpolation curves for the 
height and distance downstream of the maximum concentration are deduced 
and it is noted that the greatest variation of these factors occurs for small ct. 

The 
problem is made more general by allowing the source to move (with the 
application to things like smoke-screen layers in mind) with velocity constant 
in the y-direction. Again C, and C, are found, relative to axes moving 
with the source. Furthermore, the function 

C,= Im yCdy (1.13) 

is determined. The function C,/C, = Y ( x , x )  is a measure of the lateral 
displacement of the centre of the plume due to the motion of the source. 
For large x, this displacement is proportional to which implies 
that, for ct > 0, the mean velocity of a group of smoke particles is 
tending to increase with time as the group is swept downstream due to 
the general deepening of the plume and the increase of velocity with 
height. 

To  conclude this introduction, we discuss the nature of the eddy 
diffusivity in the light of previous solutions and formulations. Naturally, 
the form chosen for Ku has an important influence on the character of 
the solution; in particular, on the rate of decrease of concentration for 
large x. Briefly this is because, since this rate of decay is asymptotically 
the same at all levels, the overall decrease, which is governed by how 
quickly it spreads out laterally, is the greater the faster K, increases 
with height. For this reason the elementary solution corresponding to 
u = constant, Ku = K, = K = constant, 

In the final section, $ 8, a simple extension of $ 4 is investigated. 

--03 

is not applicable in the atmosphere. (In (1.14) x = 0 is ground level, 
h the source elevation.) We note that this solution gives a rate of decrease 
like r1 whereas experiments (Sutton 1947) show that this index of x 
should be about -1.76 (cf. equations (1.12), (1.11) which give an index 
-1.67 for CI = $). 

Similar objections (Sutton 1953) have been raised against the solutions 
due to Davies (1950) for which u and K, satisfy (1.1) and (1.4) respectively 
and Ku obeys the power law relation 

K, = K,(x+h)". (1.15) 
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(In Davies's solution h = 0.) This relation had apparently two advantages. 
First, on physical grounds, it seemed at first sight, due to some degree of 
anisotropy in the turbulence very near the ground, to be reasonable to 
suppose that K, > K, near the ground (that this idea leads to a wrong 
'decay' index is clearly tied up with the concept given above, that the 
decay is governed by the spreading out at consecutively higher levels, as 
x increases, where the turbulence becomes more and more isotropic). 
Secondly, it enabled the two variablesy and x in the diffusion equation (1.2) 
to be separated in the mathematical sense in a way similar to the present 
solution for a = 4. Sutton (1953, p. 283) has suggested that in fact a 
more realistic rate of decay will be obtained if K, is taken equal to K, (as 
is stated in (1.5)). As we have seen this is borne out by the solutions 
obtained in the subsequent sections. 

Supported by the comparative failure of the above two solutions, 
different approaches to the problem have been developed. Notable amongst 
these are those due to Sutton (1934) and Davies (1954). Sutton adopted 
a statistical approach based on Taylor's theorem for the standard deviation 
a(T)  of the distance travelled in a time T by an infinite succession of 
particles in a field of homogeneous turbulence. An expression for the 
concentration as a function of u was formulated in which the lateral 
dispersion was derived using Taylor's theorem ; but except for this 
dependence on a and the consequential necessity of making the solution 
satisfy the continuity of matter equation, the expression is based on the 
solution (1.14) for constant velocity and K with height. In  the case of a 
point-source at ground level, the expression is 

I t  seems, by an investigation due to Knighting (see Sutton 1953) on 
' turbulent diffusion as a random walk process ', that the basic assumptions 
lead to a conception of the diffusive process not intrinsically assumed in 
Sutton's derivation. This must be due to the character of the assumptions 
themselves; for example, to basing the expression on the solution for 
constant velocity. To make but one comment on this assumption, the 
interpolation curves of $ 7  indicate that in fact the concentration profiles 
are most sensitive to changes in v. when a is small (near constant velocity). 
The result is that equation (1.16) represents a diffusion process which 
implies that the diffusion is being carried out mainly by those eddies that 
are smaller than, or of the same order of magnitude as, the 'spreads' a, 

and a,. 
The 

effect of the turbulence is represented by eddy diffusivity coefficients K,, K, ; 
I n  the work of Davies (1954) this concept is openly assumed. 
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for a source at ground level, the form of K, remains as in equation (1.3), 
whereas K, is made a function not only of z but also of y, namely 

K, = Kl ~ ~ y ~ - ~ ~ ,  (1.17) 

so as to make the diffusion more rapid as the plume spreads laterally. 
This form of K, retains both the advantages of K, in equation (1.15), 

and moreover the solutions of (1.2) have a more closely correct rate of 
decay for large x ; the form is nevertheless open to considerable theoretical 
doubts. (Assumably, for an elevated source, K, would likewise depend 
on the coordinates of the source.) 

In considering this fundamental assumption, a clear distinction has to 
be made between two different kinds of problem, namely ‘one-particle’ 
problems and ‘ two-particle ’ problems. Thus our problem, in which we 
require the expectation concentration downwind of a source, that is the 
probability that a single particle leaving the source will arrive at the point 
in question, falls into the first category. On the other hand if we are interested 
in, say, the expectation of the maximum density in the plume at any time 
some fixed distance d downstream, regardless of where this maximum may 
be in the plane x = d, then we clearly have to know the way in which one 
particle is tending to diffuse away from its neighbour ; this problem falls 
into the second category. Now one-particle problems of this kind are 
problems in which the particle is subjected to displacements by all eddies, 
large or small, whereas in two-particle problems those eddies whose 
characteristic size is greater than the separation of the particles are not of 
primary interest in the problem because they merely shift the two particles 
equally and do not contribute to the factor required, namely their separation. 
And so, if we consider the point-source plume at any particular time, those 
eddies that are smaller than the width of the plume are spreading the plume 
out relative to its own axis whereas the larger eddies are bodily shifting the 
plume from side to side and up and down, and are thereby introducing 
‘ intermittancy ’ in the catch at any recording instrument, similar to that 
in the turbulence at the edge of a wake. 

Thus in two-particle problems it is indeed necessary to choose eddy 
diffusivity coefficients dependent on the position of the source. But since 
the present problem is a one-particle problem in which all the eddies are 
everywhere contributing to the diffusion process, that is to the mean catch, 
it is necessary to choose coefficients independent of the source position, as 
in fact has been done in this paper. 

2. ELEVATED LINE-SOURCE SOLUTION C, 
The infinitely long line-source lies across the wind in the horizontal 

y-direction (figure 1) and is elevated a height h above ground level. When 
z is the vertical coordinate measured with the source as origin the velocity 
and the eddy diffusivity coefficient are taken to satisfy equations (1.1) and 
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(1.4) respectively. The  expectation concentration then satisfies the equation 
of diffusion 

ac 
ax u0(z + h)" - = KO 

with the following boundary conditions. 
(i) In  the plane of the source x = 0, C is zero except at the source, 

where it is infinite : in ' delta function ' notation, C = Q S(z). 
(ii) The  ground is impervious to smoke : on x = - h,K,aC/ax = 0. 

(iii) The  concentration dies away at great heights : C -f 0 as x + 03. 

(iv) The  flux across any plane x = constant is independent of the 
value of x, since no smoke is lost or created for x > 0: 

W 1 C u d x  = Q. 
--A 

(The last condition is not independent of the others.) 

(2 .2)  

For the sake of simplicity the mathematical manipulation is carried out 
with coordinates related to the real ones as follows: 

(2 .3)  
U z + zh, x --f 2- h1+2a x,  Q --f uo hl+aQ. 
KO 

(the real coordinates are placed first). This results in elimination of the 
constants uo, KO and h from (2 .1)  and (2 .2) .  

The method of attack is to use Heaviside p-operators whereby the 
differential operator a/ax is replaced by p ; and C(x,  z )  is replaced by 
C(p ,  z) ,  where .- . 

C ( x , z )  = -- 

Equation (2.1) becomes 

(2.4) 

The right-hand side may be put equal to zero provided the equation is 
solved separately in the two regions z > 0 and z < 0. The  equation is 
then Bessel's equation, the solutions of which, satisfying (2 .2 i ,  ii, iii), are 

(throughout this paper K,(z) is defined as 4 7  cosec v7~{l-~(z) - I , (x ) } ) .  
Also, the two solutions must be equal on x = 0 ;  the gradients do not, 
however, have to be continuous. Thus if r = q on x = 0 we have 
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and similarly for A(p). The operational forms (2.6) have to be interpreted 
to recover C ( x , x )  by application of the integral (2.4). Clearly the two 
forms are very similar and, in fact, they have identical interpretations. 
Thus, considering only the solution for x > 0, 

where u = ( z +  1)(1+20r)/2. This may be evaluated by deforming the contour 
to one whose significant part is a loop round the negative real axis (figure 6). 
Since the integrand has zero residue at p = 0 and gives no contribution 

Figure 6. The contour from C--iw to C-i-iw is deformed into the semicircle at 
infinity and a loop round the negative real axis and the origin. 

on the circle at infinity, (2.10) may be represented as the sum of two 
integrals along the negative real axis, which may be combined to give 

This integral is a special case of Weber’s second exponential integral 
(Watson 1944, p. 395) 

which, when applied to (2.11), and reverting to the real variables (2.3), 
yields the final solution 

1. (2.13) 

Q ( zh+h2)@ uo(z + h)1+2X + uo h1+2a c, = - 
( 1 + 2 a )  K,x 

2uo(zh + h2)(1+2a)!2 
x I--ar/(l+2or) [ Ko(2a+1)2x 
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The general' properties of this solution have been discussed in the 
introduction. 

3. ELEVATED POINT SOURCE a = 4 
This is the single exact solution for the complete point-source problem. 

The particular virtue about u = 4, ,u = 0 is that u and K have the same 
functional form. This enables the variables y and z to be separated in 
the diffusion equation. 

The equation of diffusion is (1.2) with u, K, and Ku g p n  by (l.l), 
(1.4) and (1.5), respectively, with boundary conditions identlcal with (2.2) 
except for (iv) which is changed to 

1 Cu dydz = Q. 
- w  

As in $ 2  it is found convenient to use related coordinates: 

x-+ O h 1 f 2 % ,  U z -+ hz,  y + J ( z ) h y ,  Q -+ ughafa! J@)Q (3.2) 
KO 

(the real coordinates are placed first), where K,, as used in (1.6), is equal 
to KO when p = 0. The  equation of diffusion is thus 

A solution of the form 

(3.4) 
Y 2  

rl = 4 x 9  c = X(X,Y) Y ( 4 ,  
is sought, whereby (3.3) can be separated into two distinct equations linked 
only by the parameter m :  

(3.5) 
1 ax ax m 

+---- + -x= 0, 
a2x 

a22 qX+i )  az ax x 
- 

The solution satisfying the boundary conditions is found by putting n~ = 0. 
Then (3.6) can be solved to give 

and since by inspection of (3.3) we see that ,.Clay is also a solution then 
so is 

1 
l l X  (3.7) X(x,  z )  - e--u8'42, 

where X ( x , z )  satisfies ( 3 . 5 )  with m = 0. This is exactly the same 
differential equation as (2.1) with a = +; also X(x ,z )  must satisfy the 
same boundary conditions (2.2) except that the flux Q must be altered 
to QI247~. Thus the solution, reverting to the real variables (3.2), is 

C(x,z) = - 447r Q ( ~ h + h ~ ) ~ / ~  (KO x ) ~ / ~  exPC - y 2 + h 2 + ( z + h ) 2 ] I -  4K0 x/uo 1'4 ( 2K0x/u0 a h + h 2 )  * (3.8) 
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I n  the generalized case when K ,  satisfies (1.6), the exact solution is found 
in an exactly similar manner for the case 

T h e  solution is then 
u = g(l +p). (3.9) 

X 
Q -  1 ( ~ h + h ~ ) ~ / ~  

2( 1 + 2a) \/(7rK1) KO x3’2 
C =  

1. a( 1 + ~ N ) ~ ( K , / K , ) ~ ~  + (Z + h)l+,O1 +h1f201 
x exp[ - ( 1  + 2~c)~Ko X/UO 

).  (3.10) 
2u,(zh + h2)(1+2a)’2 

x I-ai(l+,a) (1  + 2a)2Ko x 
T h e  important thing to note in this section is the Gaussian form of Y ,  as 
this is the basis of the subsequent sections. 

4. POINT-SOURCE AT GROUND LEVEL 

With the variables changed, for the sake of simplicity, as follows, 

the equation of diffusion (1.2) is 

T h e  approach of this section has been discussed in the Introduction and 
involves determining exact solutions for Co (see (1.7)) and C2 (see (1.8)) 
which may then be utilized to find the concentration C by the formulae 
(1.9) and (1.10). 

C,, being the solution of the line-source problem, is already determined 
( 5  2), and in the special case of zero source-elevation h is 

where Q 
( 1  + 2a)1’(1+2a)[ - a/( 1 + 241 ! * A =  

The  second function, C,, satisfies the equation 

Writing 
l + u  b = -  2+P 

?1 = (1+2a)2x’ 1 +2a’ 1 +2a’ 
Z1 +2a 

a = -  

then the solution of (4.5) is obtained by expressing C, in the form 
C, = 2 4  1 + ~ G C ) ~ ~ - ~ X ~ - ~ ~ - V G ( ~ ) ,  

where G(9) satisfies the ordinary differential equation 

.. . .  
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The homogeneous equation is the equation for the confluent hyper- 
geometric function and has the two independent solutions (excluding 
u = 0) 

We choose U ( b ; u ; q )  for the second solution since it is o(eq) at q = 00 

(Jeffreys & Jeffreys 1946, p. 579). The  particular integral of (4.8) can be 
expressed, by the usual formula given in the theory of 'variation of 
parameters', in terms of the right-hand side and the Wronskian 

(4.10) 

so that the full solution is 
( b  - l)! 

C, = 2 4  1 + ~~x)"-'x~-~c' ~ X 
(a- l)!  

x { U(b ; a ; rl)[I,+A] - ; a ; q)[12+B1), (4.11) 
where I, and I, are indefinite integrals arising from the particular integral, 

I ,  = i' qa+b-2e-'i ,F,(b ; a ; 7) dq, 

I ,  = i'l q"fb-2e-9U(b ; a ; 7) d q ,  
(4.12) 1 0 

0 

and A and B are constants to be determined. 
The boundary conditions that (4.11) must satisfy are (2.2i, ii, iii). 
Thus C, --f 0 as q + co, which in terms of G(q) implies that G = o(e7) 

for large q. I n  this limit, the second term is dominant and would be O(e7) 
unless B = -I,(co). I,(co) may be evaluated by use of the integral 
representation of U(b ; a ; q), namely 

to give (b -  1) ! ( a +  b - 2 )  ! 
(2b - 1) ! 

T ~ , ( C O )  = - B  = 

(4.13) 

(4.14) 

Applying the zero-flux condition on x = 0, q = 0, which is 

ac 
7"- on q = 0, (4.15) 

to (4.11), the only non-zero contribution is the term containing the factor 

And so, to satisfy (4.15), we have 
A = 0, (4.16) 
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Hence 

This  is further simplified by expanding the integrands in powers of 9, 
integrating term by term, and then collecting like powers of 7 to give the 
rapidly convergent series 

(b-l ) ! (b+a-2)!  ( b - l ) !  

where 00 (2b+r-1)! 

G(y) = (26- 1) ! 

(4.19) 

T h e  evaluation of this solution is sufficiently simple to warrant its use. 
Generally no more than eight terms are required to give the solution correct 
to four places. 

w ; a ;?) = zo (b  + r )  ! (b + a + Y - 1) ! ?r - 

I n  terms of the real variables (4. l), the ' spread ' function is 

(1 + 2tC)(3b-4)/2 (b  - ') ! (b + a - 2, ! .&a X 
Kl K P  

G = ~ Q  , J ( K ) F  (a  - 1) ! (2b - 1) ! 

x e - f  ,F,(b ; a ; .I) - @V(b ; a ; q)] , (4.20) 

b = -  2 + P  (4.21) 
uo 21+2a l + t C  a = -  with 

'= ( 1 + 2 ~ ) ~ K , x '  1 +2&' 1 +2u' 

Four special cases are known in which the solutions of (4.5) can be obtained 
very much more directly. These solutions are obtained in terms of simple 
functions and can be shown to be included in the general form (4.20). 
The  four cases correspond to values of u = 0, 4, + and 1, with p = 0: 

u = 0) (4.22) 

a =-1 2, c2 = 2 K" -XC, (4.24) 

(this being the  exact solution of 5 3 ) ;  
u0 

c r =  1, (4.25) 

(4.26) 1 TEe-V dq 
0 

(Pearson 1922). 
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We noted in the Introduction that the rate of decrease of concentration 
as x increases for large x is considered to be a valid test of any proposed 
expression. Equations ( l . lO) ,  (4.3) and (4.20) show that 

c N &q+2a)12 = 3-(2+a+tf4)1(1+2a), (4.27) 
so when p = 0 and 01 = $ (the expected value in neutral stability) 

c N x-513, (4.28) 
which agrees with those values which have been obtained by experiment 
(Sutton 1947). 

5. RECIPROCAL THEOREM 

The reciprocal theorem, which is of vital importance in extending the 

The concentration at x’ due to a source at x“, with the flow in the 
positive 3,-direction, is equal to the concentration at X“ due to an 
identical source at X I  when the direction of the flow is reversed. 

Consider the partial differential equation 

work to the problem of the elevated source, may be stated as follows. 

The proof of the theorem runs thus. 

(with summation over repeated suffixes), where G is a Green’s function 
with centre XI‘ and which satisfies the boundary conditions 

> 

on the ground i Bini = 0 
dG K . .  - n. = 0 

23 axi I 

(ni are the direction cosines of the normal to the bounding surface-for the 
horizontal ground n, = (0, 0,l)). Let this equation be represented by 
LG = 0 where L is an operator. Also let the adjoint equation, with the 
same boundary conditions, 

be represented by MG, = 0. 
equation with centre x‘. Then 

G,  is a Green’s function of the adjoint 

0 = [G2LG- GMG,] dx 
V 

by the application of Green’s theorem and the divergence theorem. Let 
the bounding surface S be the ground, the hemisphere at infinity and the 
two small spheres excluding the singularities x’ and x”. Since Binj = 0 

F.M. E 
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on the ground and G - l / v  (Y = distance from source x”) the second 
integral makes no contribution. 

T h e  first integral makes a contribution only on the small spheres: 
the first term on the one around x”, the second on the one around X I .  

Provided these spheres are sufficiently small, C,, is constant on the one 
at x” and G on the one at x’. Since the flux from the two sources are 
equal, the right-hand side of (5.4) reduces to 

where Q is this flux. 

in words, the Green’s functions of the equation and its adjoint are the 
same if the variables are interchanged. 

Q[C,,(x”, x’) - G‘(x’, x”)J, 

G(x’, x”) = Ga(x”, x’) ; 

(5.5) 

(5.6) 

Thus 

Now if 
( 0  0 0 

K . =  ,3 0 K,(x) 0 and Bi = (u(x) ,O,O),  (5.7) 1 0  0 K A ~ )  J 
then LG = 0 is the diffusion equation with flow in the positive direction 
of x and MGa = 0 is the diffusion equation with flow in the negative 
direction of x. Also, G(x’,x”) represents the concentration at x‘ due to 
a source at X“ with flow in the positive direction, and GJx”, x‘) represents 
the concentration at X” due to a source at x’ with flow in the reversed 
direction. We have G(x’,x”) = G,,(x”,x’) which is the theorem to be 
proved. 

This theorem, as discussed in the Introduction, enables the ground 
level concentrations to be determined downwind of an elevated point-source 
from the concentrations at arbitrary level downwind of a point-source on 
the ground. In particular it is used to determine C, at ground level 
(everything above applies to C, and C, as well as to C). For source-elevation 
h this is obtained from (4.20) and (4.21) by putting x = h. 

6. ELEVATED POINT-SOURCE : ‘ SPREAD ’ FUNCTION c2 
It would be desirable to find C, for all heights (although of course it 

is the ground level value in which we are particularly interested). The  
complete solution has already been found in $ 3  for tc = i. This section, 
following an approach similar to that used in $ 2  to find C,, yields the 
complete solution for tc = 0. and 
Y. = 1 could also be treated in this way. 

With the transformation of variables (3.2) together with changing C, 
to h3C2, the modified C2 satisfies the equation 

It seems possible that the cases tc = 

when p is zero. In  p-operational form (see $ 2), this becomes 
a2c, ~ - ~ a c ,  
- + -- -(%+ l)“-’pC, = -2co, 
ax2 1 + x ax 



D$usion from mi elecated source in a turbulent atmosphere 67 

since C, = 0 on x = 0. As before, put 

and let 

Then (6.2) becomes 

- A’( p)y(2-3a)’(J +2dI ~ - -  
--oI (ilzair) (2 < o>, J 

by the application of (2.6), (2.8) and (2.9). ‘The complementary functions 
are the same as in $2. The  trouble arises in attempting to evaluate the 
particular integral. 

P.I. = A(p)ral(i+2a)K,,(l+20r)(r) 1‘ s ~ 3 - 2 a ~ ~ ~ 1 + 2 ~ ~ K ~ ~ ~ l + 2 0 r ~ ( s ) I o r , ~ l + z a i ~ ( s )  ds - 

For z > 0, say, the particular integral is 

0 

These integrals may be evaluated in terms of simple functions only for the 
four values of a :  a = 0, +, & and 1 (cf. $4). has 
been carried through and is in complete agreement with $3. The  two 
cases of a = 4 and a = 1 have been explored; however in taking the 
interpretations of the solutions obtained, it was found necessary to put 
z = - 1 (corresponding to ground level). The  results were in full agree- 
ment with the solutions obtained by application of the reciprocal theorem 
to (4.23) and (4.26). 

For a = 0, the analysis can bc carried through without any restriction. 
Since a = 0 is of particular interest, being close t 3  a = f ,  and also because 
it is typical (although quite different in detail) of the other three solutions, 
the solution will be given below. 

The  solution for o! = 

When a = 0, equations (6.4) reduce to 
1 0 

A(p) = ‘I&+) I P ‘  
Q 

A’(P) = -KoWP) , 
P J 

i 
and (6.6) reduces to 

P.I. = AKo(r) s310 KO ds - AI0(r) j r  r3KK,2 ds. (6- 8) 

A similar expression is obtained for z < 0. If C,, and %’,$ represent 
modified Bessel functions of purely imaginary argument ( I ,  and K,, cos nn) 
then 

(6.9) 

E Z  

j’.<T,,(sjO,(s) ds = ~ [ 3 C o ( ~ ) % ? o ( ~ ) - 2 C 1 ( r ) % l ( ~ )  - C2(r)%2(r)l 
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(Watson 1944, p. 136). This relation is used to express the particular 
integrals (6.8) in terms of products of three Bessel functions. By re- 
arranging the terms, the Wronskian relationship (Watson 1944, p. 80, 
eqn. (20) 

K”(NJ+l(4 + ~ ” W ” + 1 ( 4  = I / r  (6.10) 

may be used to give 

Thus the solution which has the correct behaviour at x = co is 

Where L(p), F(p)  and G(p) have to be determined from the conditions: 
(i) no flux across z = - 1, Y = 0, i.e. X’,/ar = 0, giving F(p)  = 0 ;  

(ii) on x = 0 the two solutions have to be equal, so that, if Y = Q = 3%’p 
on x = 0, we have 

I 
21.2 I 

- - QKo(q)(rl1(Y) - 12(1)} ( z  < 0). 1 
3 q2 J 

c2 = mZK1(q) + K2(Q)Yo(r) - I 
I 

This equation (6.13) has to be reduced to a form in which it may be 
interpreted ; we are limited to reducing the two relations to sums of pairs 
of Bessel functions of equal order, or the derivatives of such pairs. The  
clue, as to  what form to look for, is given by the term ( ) ~ ~ Q l ~ ( q ) K ~ ( r ) .  
I t  suggests that the form should contain derivatives up to and including 
the third. By use of the differential equations satisfied by the Bessel 
functions and also the recurrence relations such as 

(6.14) 
2 d 

I,(d = I&) - p), Ids) = -Io(q), 
$4 

the equation (6.13) may be simplified to 

The  interpretation will be carried out for z < 0. The  method is exactly 
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similar for a > 0 and it can be seen that the interpretations would finally 
be identical, as they were in $2. 

The second term has the interpretation 

and on integrating by parts this is 
. C l  ion 

m C- im 
.f2 = 2Q(z + l ) l / 2  -. Il(r)Kl(q)e~’” dp. (6.17) 

Following the same process as in $2, we find 

The first term in (6.15) (2 < 0) has the interpretation 

(6.19) 

which again may be integrated by parts to give 
- C + i m  

C - i m  
= $Q ( x p  + @)lo(r)Ko(q)ePz dp (6.20) 

C f i m  

G‘-im 

= ( $Qx3 d + 2Qx2)& 1 Io(v)Ko(q)ePx dp. (6.21) 

Again following the same process as in $2, we finally obtain 

for all z. This solution reduces to (4.22) with r )  = u,, h/Ko x when the real 
variables are substituted back into (6.22) : 

c - K o x e - ~ { ( ~  + 201,(p) +p l l (p ) )  (6.23) - 3ug 

z + 2 h  2u0 l / (zh + h2) 

KO xbo’ KO x where t=--- P =  

and when z is put equal to its value at the ground a = - h. Equation (6.23) 
is used together with (2.13) in (1.9) and (1.10) to plot the concentration 
at three different levels (figure 10) in the next section. 

7. RESULTS 
The results of the previous sections are perhaps best presented in 

graphical form, when the differences between the curves are most readily 
appreciated. Since the graphs are more or less self-explanatory it will 
suffice to tabulate the main points in a very concise way. 

The profile for the elevated line-source, when cc =: +, has been given 
in figure 2 in Q 1. 
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For the point-source problem, the reciprocal theorem has been applied 
to equation (4.20) to give the ground level concentration when tc = i .  
This profile and the four simpler cases ((4.22) to (4.26)) are given on the 
same graph (figure 7), and are sufficient to deduce, for general tc, inter- 
polation curves for the main features, namely, the magnitude of the maximum 

K O X  
uo hl+za 

Figure 7. The concentration at ground level along the line y = 0, as a function of x, 
‘The five curves the distance downstream, due to an elevated point source. 

correspond to values of 0: = 0, +,$, 6 and 1. 

Figure 8. Interpolation curves showing the maxiinurn concentration C,,, at ground 
level and the downstream distance x,, from the elevated source to the position 
of that maximum, plotted as functions of the parameter 01. 
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concentration and its distance downstream (figure 8). These curves indicate 
that the profiles are most sensitive to changes in u when u is small. The  
combined efftct due to the variation in the shear and in K as a increases 
can be summarized as follows : 

(i) the maximum goes up ; 
(ii) the maximum occurs earlier ; 

(iii) the maximum is ‘ peakier ’ ; 
(iv) the plume strikes the ground earlier ; 
(v) the concentration falls off for large x more slowly. 

Figure 9 shows the variation of concentration for a = 0 at three different 
levels: at ground level, at source height, and at twice the height of the 

KO X 

Figure 9. The concentration on y = 0, downwind of an elevated point source 
I t  is plotted at three heights: at the ground --, at source when a = 0. 

height -.- and at twice the height of the source * * * 9 * . 

C - 1l0  h2+a Q 

0.2 0.4 0.6 0 6  1.0 1.2 

I(O’.V 

r,,, hl +%a 

Figure 10. Roth curves give the concentration when the eddy diffusivity coefficient 
‘l’he ‘ peakier ’ of the two curves applies when the is constant with height. 

velocity varies linearly with height, the other when the velocity is constant. 
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source, z = h. Initially, as we saw in the Introduction (figure 3), the 
concentration is greater at x = h than at x = -h.  But later, due to the 
reflective nature of the ground and to the greater lateral and vertical 
diffusion above the source, the concentration at z = h starts to fall whilst 
its value at the ground continues to increase, rising to a maximum con- 
siderably in excess of that previously experienced at z = h. Eventually, 
as in the case of the line-source (see $ l), the three profiles asymptotically 
approach one another for large x. 

Finally figure 10 shows the effect of the shear when the eddy diffusivity 
is kept constant. For one curve the veIocity shear is constant, conforming 
with the solution a = 1, while the other curve represents the solution for 
u = constant. The effect of the shear is summarized thus: 

(i) the maximum is increased ; 
(ii) the maximum occurs earlier ; 

(iii) the maximum is ' peakier ' ; 
(iv) the rate of decrease of C with x for large x is unaltered. 

8. 'MOVING POINT-SOURCE 

The idea behind the previous sections can be carried over and extended 
when the source is moving with constant velocity ZI in the transverse 
y-direction (figure 11). The source may be elevated at height h or at ground- 
level, since the reciprocal theorem of $5 is still applicable. The solution 

Figure 1 I .  The source is moving with velocity o along the ground in a direction at 
right-angles to the unidirectional velocity field I&). 

will therefore be sought for the ground-level source. It is found convenient 
to work with axes moving with the source so that the problem is that of a 
stationary point source in a wind field (u(z), v,  0). 

With u, K2 and K!, following (l.l), (1.4) and (1.5) and by the trans- 
formation of variables (4.1) with K,  = KO, the diffusion equation is 
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This equation can be used to find the exact solutions for three functions 
of the concentration. As before, we may determine C, and C, ((1.7) and 
(1.8)), and sinc; the distribution is no longer symmetric in the y-direction 
the third function is chosen to be 

m 

c,= j yccty. (8.2) 

!La{ 

- - m  

Now if y = Y(x,z)  denotes the lateral displacement of the centre of the 
plume then 

C ' D  

c; = y - Y(x,  z)}C dy - - 0. (8.3) 

(8.4) 

Therefore Y(x, z )  = c,/co. (8.5) 

- m  

C, = yC dy = Y ( x ,  z )  I rn  C dy = Y(x,  z)Co. Thus 
- - m  - w  

Equation (8.4) gives the physical interpretation of the function C,. 
function C, is still connected with the spread of the plume. 

The  

The spread is equal to  Cg/Co, where 

Thus 

a0 

C$ = [ {y - Y(x, z)},C dy. (8.6) - - a  

The concentration may be represented by an expression equiva!ent to 
(1.9) : 

c = X(x,  4 e x p  - [{r - Y ( x ,  z ) } 2 / f ( x ,  41, (8.8) 

where 

The first function C, is unaffected by v and therefore is given by (4.3), 
(4.4) and (4.6) : 

The function C, satisfies the differential equation 

Putting 

equation (8.11) becomes 

the solution of which is 

(8.11) 

(8.12) 

(8.13) 
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Now C, must satisfy the no-flux condition at the ground: q'(aC,/aq) = 0. 

Also C', -+ 0 as 7 --+ 00, thus 

Thus B = 0. (8.15) 

Whereby 

where 

a3 

C, = 1 1 f - le- ' I  dri, 
17 

(1  +2a)"-2. 
V n =  -- 

KO (2a - 1) 
So that for large x, or for z = 0 (reverting to the real coordinates), 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

T h e  shape of Y ( x , x )  on x = 0 for u = 0, $, k, 4, 1 are plotted in figure 12. 

KO x - 
2'0 

Figure 12. The displacement Y ( x ,  0) of the rentre of the plume at ground level, 
relative to the position of the moving source. 

The  third function is rather more involved due to the effect of the velocity c. 
However, we may write C, = Cz,l+Cz,z where C2,1 is the same as (4.20), 
in the real coordinates, and does not involve v .  C2,2 is the perturbation 
term and is found by a method very similar to that used in $4. It satisfies 
the differential equation 

(8.20) 

in the variables (4.1). 
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Putting 
(8.21) 

then (8.20) becomes 

The solution, satisfying the zero-flux condition on 7) = 0, is 

- , F 1 ( 2 a ; a ; q ) { B +  j : q 2 u - 2 U ( 2 ~ ; a ; 7 )  jrn ri ta-li"dtdq}]. (8.23) 

B must be determined from the condition that C, --f 0 as q -+ 00. 

similar process as in $4,  
By a 

(8.24) 

The particular integral in (8.23) may be simplified by integrating by parts. 
It is found desirable to express U(2a  ; a ; q)  in terms of the corresponding 
,Fl-functions as before : 

= - ( 2 ~ - 2 ) ! ( 3 a - 2 ) !  
a(4a - 2) ! ' 

tu-1 lFl( 1 + a ; 2 - a ; t )  dtdq. (8.25) 

Fortunately this can be simplified a great deal. 
terms. 
reduce to 

Consider the first tw-0 
Integrating term by term and summing, we find that these terms 

(8.26) 

(see (4.26) for 1"). The  other two terms also simplify and can be expressed 
in terms of the function V(b;a;q) defined in (4.19). Integrating term 
by term and collecting like powers of 7, we finally obtain 

,F1(2a ; a ; 7)) - T p V ( 2 a  ; a ; 7)) - 1 (2a - 1) ! ( 3 ~  - 2 )  ! (2a - 2 )  ! 
X ( d  = a(4a - 2 )  ! I-- ( a -  l ) !  

- rl"e'l I*(q, a -  l), (8.27) 
a(2a - 1) 

from which C'.L:l tnay be obtained using (S.21) and thus, with the use of 
(4.20), (y2. It should be noted that is proportional to 7%'. 'I'his 
perturhation term increases the spread over the stationary-source case, 
and for large x this increase is proportional to x2(( (also on z = 0). 
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9. CONCLUSIONS 
The main conclusion is that this approach has led to a fair measure 

of success in tacqing the general problem of an elevated point-source. 
The most important results are represented by the equations (2.13), (3.8), 
(4.20), (5.6) and (6.23) and the graphs. Between them, they give an almost 
complete picture of the plume under varying conditions. The reciprocal 
theorem of $5  has proved highly useful, but it should be pointed out in 
warning that this theorem only holds when the form of the eddy-diffusivity 
coefficients are such as have been taken in this paper (namely, independent 
of the source position) and cannot always be applied to solutions found 
under different assumptions, such as those of Davies. However, this is 
in no way serious, since, as has been indicated in the Introduction, the 
form of K used in this paper is considered to be theoretically preferable 
in the region in which the K-theory can be applied. 
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